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ABSTRACT

A detection model is developed (o predict visihility thresholds for discrete cosine transform coefficient
quantization error, based on the luminance and chrominance of the error. The model is an extension of a
previously proposed luminance-based model, and is based on new experimental data. In addition to the
luminance-only predictions of the previous model, the new model predicts the detectability of quantization error
in color space directions in which chrominance error plays a major role. This more complete model aklows
DCT coefficient quantization matrices to be designed for display conditions other than those of the experimental
measurements: other display luminances, other veiling luminances, other spatial frequencies (dilferent pixel
sizes, viewing distances, and aspect ratios), and other color directions.

1. INTRODUCTION

1.1 Discrete cosine transform-based image compression

The discrete cosine transform (DCT) has become a standard method of image compression."?® Typically
the image is divided into 8x8-pixel blocks, which are each transformed into 64 transform coeflicients. The DCT
transform cocflicients 1, ,,, of an NxN block of image pixels i, ,, are given by

N-l N-I
Ly » = E E ok Ciom Chon - HLO = 0,..., N-1L, (1a)
J=0 k=0
where
nm d VI/IN, m=0
(‘j,m = Of,m LUb(_i:’\I—-[ J'+ D R an o, = _JW i m >0 . (1b)
The block of image pixels is reconstructed by the inverse transform;
N-1 N-1
ik = E Z Do n Ciom Chon s Jok=1,..., N-FL (2)
=0 n=0

which for this normalization is the same as the forward transform. Quantization of the DCT coecfficicnts
achieves image compression, but also causes distortion in the decompressed image. Specifically, quantization of
cocflicient £, , induces an error image which is simply the associated basis function, with amplitude equal to
the coefficient quantization crror (neglecting the DCT normalization),

1.2 The Quantization Matrix

The JPEG compression standard"™ requires that uniform guantizers be used for all the DCT cocfficients.
The quantizer step size used for each coefficient is determined by the user. A matrix is used to specify the
quantization of the DCT coefticients, where the m, nth entry, (,, .. in the matrix gives the quantizer step size
for coelficient f,; . Two cxample quantization matrices have been included in the JPEG standard. These
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matrices are given in Tables K.l and K.2 of reference(2) and in Table 5 of reference(4). One of these matrices
is commonly used for graylevel images, and for the luminance component image of color images; the other
matrix is used for chrominance images. ‘These matrices were designed for a particular compression/viewing
scenarie, and it is not clear how they should be changed when used under different viewing conditions, or
cspecially for compression in a different color space. In this paper we propose a quantization matrix design
technique that can be applied under a wide variety of conditions: different display luminances, veiling
luminances, spatial frequencies, and color spaces.

2. DETECTION MODELS

2.1 Luminance-only Detection Model

Peterson, Peng, Morgan, and Pennebaker? developed quantization matrices for compressing images in the
RGB color space {(a different matrix is uscd for cach of the R, G, and B component images). The matrices were
derived from measured detection thresholds for small patches of replicated DXCT basis functions, produced on a
monilor using an individual R, G, or B gun on a black background. With minor adjustiments, the measured
thresholds were converted to quantization matrices which performed well in informal tests,

Ahumada and Peterson® proposed that the threshold measurements of Peterson et al.? could be predicted
by a luminance-only detection model. ‘The theoretical basis of their model is the assumption that the
detectability of distortion in the decompressed RGB image can be predicted from the luminance contrast ol the
error image caused in a color component image by quantization of an individual DCT coefticient for a single
block. That is, if the quantization error images associated with all the quantized DCT coefficients in all image
blocks in all three color component images have amplitudes below their respective visibility thresholds, then no
distortion will be visible in the decompressed image.

The Ahumada/Peterson luminance-only detection model approximates the log of the contrast sensitivity
function (the dependence of the inverse threshold contrast on spatial frequency) by a parabola in log spatial
frequency. The predicted log luminance threshold of the m, nth DCT basis function is

s by

i (1=r Y cos®8,

log Ty, .y = log ki (logf, —logf)?,  man=0..., N-L 3
The niinimum luminance threshold, s by, occurs at spatial frequency £y, and kg, determines the steepness ol the
parabola. The parameter 0.0 <s < 1.0 is to account for visual system summation of quantization errors over a
spatial neighborhood. Such spatial summation causes a decrease in threshold. The spatial frequency, £, .
associated with the m, nth basis function, 1s given by

P = 5 NORTW Y+ (T W, @)

where W, is the horizontal and W, the vertical size of a pixel in degrees of visual angle. The model includes a
factor ( ri+(1=ry) C()szﬁm_n ) which accounts for the imperfect summation of the two Fourier components
present in basis functions having two cosine components (m and n # ), and also accounts for the reduced
sensitivity due to the obliqueness of these Fourier components. The magnitude of the summation/obliqueness
elieet is determined by 0.0 <rp < 1.0, and the angular parameter 8,, , is given by

Opn = arcsin—z—f—"‘l‘”fo'n . )]

2
",

Based on a fourth power summation rule for the two Fourier components®, 7y is set to 0.6, The ohlique effect
can be included by decreasing the value of ;.

Ahumada and Peterson® fit this rodel to the Peterson ef al* threshold data, and then used the grating
detection data of Van Nes and Bouman® to derive luminance dependencies for by, £, and k|, thus enabling the
to model be used for a range of viewing conditions affecting luminance, contrast, and spatial frequency of the
guantization crrors. Since the single gun measurements of Peterson et al.* mainly varied the intensity of the



spatial modulation (chrominance remained relatively constant), the ability of the luminance-only model to
predict visibility thresholds for modulations in combined luminance and chrominance dircctions was not
adequately tested.  Also, the replicated DCT basis functions used by Peterson et al.* have Fourier transforms
possibly more like those of grating studies than those of single basis functions™®. To address thesc issucs,
Peterson” made new threshold measurements of single basis function, single monitor-gun test images
superimposed on a white background (1931 CIE coordinates: Xy = 37.27, Yy = 41.19, Zy = 29.65). 'This
configuration gives lest stimuli having more significant chrominance modulation. Figure 1 shows the new
measured thresholds for basis functions where m or 1 =0.

A parabola representing a version of the luminance-only model is also shown in Figure 1. This model
docs a [air job of predicting the measured (hresholds independent of color direction, except for the DC (m and
n = 0) thresholds, which are obviously different for the three color guns. We proposc that the lower thresholds
for the R and B gun DC basis lunctions are the result of chromatic detection mechanisms having greater
sensitivity than the luminance mechanism. Thus, even for quantization in the RGB color space, a luminance-
only model is not quite sufficient. Color mechanisms must be taken into account to determine appropriate
quantization levels for the DC coefficients, More importantly, for images compressed using isoluminant color
directions, a complete color space diserimination model for the DCT basis functions is clearly needed.
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Figure 1: Visibility threshold contrast ratio measurements from Peterson” of single basis function, single
monitor-gun test images superimposcd on a while background, for basis functions where m or n =0.
Circles indicate R gun threshelds, diamonds indicate G gun thresholds, and squares tndicate B gun
thresholds. The points plotted at the far left of the graph are DC basis function (m and n =0) thresholds.
The parabola-shaped curve represents a version of the luminance-only model of Equation (3).

2.2 The Luminance/Chrominance Detection Model

To account for the DC sensitivitics in the data of Figure 1, we add two chromatic channels to the
luminance-only model. A large number of different color spaces have been proposed as appropriate bases for
chromatic discriminations, We have selected for our chrominance channels those favored by Boynton'": a red-
green opponent channel and a blue channel. The relation between these chromatic channels and the CIL 1931
XYZ celor space is straightforward. The blue channel is just Z, and the red-green opponent channel O is given
by O =047X - 0.37Y —0.10Z. This opponent channel is Boynton’s'" (Red-cone) —2(Green-cone) channel,
with the Red and Green XYZ cone responses taken from Macl.eod and Boynton'?. (We ignore the small
correction developed by Vos' for going from the 1931 standard CIE values to the scientifically favored 1951
Judd CIE values used by MacLecod and Boynton.) Expressed in matrix form, the transformation from XYZ to
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our YOZ, opponent color space is

0 047 O
[ YOZ 1=t XYZ ] xyzMyoz =[XYZ1| | 037 0 |. (6)
0 —0.10 1

We model the frequency response of the Y channel with the luminance-only model described above. To
reflect this, we subsequently refer to threshold Ty, , as Ty, ,. The parameters in the luminance channel
model will subsequently be referred to with a similar change of subscript (. = Y). To complete our
luminance/chrominance model, we must also specify the shape of the frequency responses of the O and 7.
channels. Mcasurements of the spatial frequency responses of isoluminant chromatic modulations have typically
found the chromatic sensitivity functions (the dependence of the inverse threshold contrasts on spatial frequency)
to be low-pass in the frequency range of our basis functions and to be less sensitive at high spatial frequencies
than the luminance channel.'"'> We therefore model each of the O and Z log chromatic thresholds as a
parabola, modified by setting it equal to its minimum value for all spatial frequencics to the left of the
minimum. Since the data of Petersan® are too sparse to estimaie (wo separate chromatic channels in close
proximity, we make the simplifying assumption, supported by the results of Mullen!!, that both O and Z have
the same shape spatial frequency response. The O and Z log chromatic thresholds for the m, nth DCT basis
function can then be written:

-

A b()

log if f < foy
. el * m,n A
roz+(1=roz)cos 9, ,

]Og T(), mon = 1 5 b() . (73)
log +koz(log frn =108 f 02)*, if fmn > for

Yozt (1 F"‘r(_)z) C()Szem "
and

sz

log , " f < f .
£ roz+(1=roz) cos?,, , m,n oz
10g T?.,m,n = P bz (7b)

log + koz (008 forp = 10g fo) s i fan > foz

el
rog+(1-roz)cos™0, ,
Note that Equations (7a) and (7b) are identical, except for the parameters b and by; To.m,n and Tz, ,, share
the parameters 8, kg2, f oz, and rgz. To obtain the overall model threshold T,, » from the three channcl
thresholds, we use the "minimum of" combination rule:

Twn = min{ Ty mou» T().m,n' T?.. nn e &)

In order to estimate the parameters in the model described above, we fit the model to the data of Peterson’
shown in Figure 1. Recall that the Peterson® thresholds were ineasured for single basis functions. To reflect the
absence of a spatial summation effect in this data, we fixed s = 1.0 during the fitting process. This fit resulted in
the parameter values shown in Table 1 for kv, fy, kgz, and foy. We chose rapy=0.6, the same as rv.

Boynton'” claims that at moderately high intensities, the Z channel’s minimum threshold (s b5 in our
model) is approximately proportional to the background activity of the Z channel, and the minimum thresholds
for the Y and O channels (s by and s bg in our model) are approximately proportional to the background Y.
Based on the fit of our model to the Figure 1 data, we sct the constants of proportionality to be: by = 0.0219Y,,
by =0.0080Yy, and by = 0.0647Z,, where Y and Zg are the CIE valucs of average white. To determine a
value for 5, we compared the thresholds measured in Peterson’ to those measured by Van Nes and Bouman® for
large test pattern sinusoidal gratings. The Peterson® thresholds are consistently higher than the Van Nes and
Bouman® thresholds, a result attributable to spatial summation, Multiplication of the Peterson’ data by 0.25
brings them into approximate agreement with the Van Nes and Bouman® data. We therefore chose s =0.25.
These results are summarized in Table 1.
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Table 1. Parameter values estimated for the model of Equation (8).

model parameter values
channel s r ! k b
Y 025 06 31 134 0.0219Y,

O 025 0.6 1.0 300 0.0080Y,
Z 025 06 1.0 300 006477,

As part of the model fitting, we also tried the Euclidean distance combination rule:
Tm.n‘-.:z:TY,m.nﬂz+T(),Jn,n72+TZ.m.n72‘ (9)

However, when the data of Figure | were fit using this rule, in order (o prevent contributions from the chromatic
channels at low spatial frequencies, f gz was forced to be unrealistically low, and/or ko, was forced to be
unrealistically high. This led to our selection of the "minimum of" rule for T, ,.

3. QUANTIZATION MATRIX DESIGN

Quantization crrors in an arbitrary color space are interpreted in the following way. Suppose we wish to
compress a color image whose pixels arc computed as a linear combination of XYZ values,

[DEF] = [XYZ] xyzMpii:« (10

That is, the DCT is to be performed on an image in color space DEF, and xy,Mppy is the transformation from
XYZ to DEF. The image in DEF space can be thought of as being transformed to XYZ space, and then
converted by the visual system to YOZ space for discrimination. We need to determine limits on the sizes of
errors in cach of the D, E, and I color space dimensions, in order for the resulting errors inthe Y, O, and Z
channels to all be below the thresholds established by our model. These DEF thresholds determine the
quantization matrices. For example, a unit error in the amplitude of a DCT ceefficient in dimension D induces
errors whose amplitudes in the Y, O, and Z channels are given by the first row of pgpMyoz;

M1 My, Mps
peEMyoz = peeMyyz X xyzMyoz = My, M;a, My, ' (11)
Mz My, Msa

where ppMyxyy 18 the inverse of xyzMpge.

We now describe in detail the procedure to calculate Qp s QF, m,n» and @g 4, the quantization matrix
entries for DCT coefficient 7,, , in the D, E, and F component images. First, using Equations (3) and (7), the
display paramcters W, and W,,, and the model parameters given in Table 1, the model channel thresholds,

Ty wons Tomon» and Ty, for the m,nth DCT basis function are calculated. Now let yTy y ny 0TD m,n» and

7Tb ., indicate the thresholds imposed on the guantization error in the D component by the model’s thresholds
for the Y, O, and Z channels, respectively, Each of the Y, O, and Z model channel thresholds are converted to

a D threshold as follows:

TYmn TOmn T’/,mn
T n.on = — » T mon = — y £ d 71 n - — - 12a
Tomn = s 0o = g @04zl = Ty 7 (122)
Similarly for E and F:

TYmn rT()mn T?mn
Teman = e T = —, T = 12b
YLiE m, ‘Mz, 11 Ot m,n ‘le 2I ZLE,mn |M2_ 3| ( )
T‘t’,m‘n TO‘m,n TZ,m,n (120)

T: = T‘ = N ,T: = .
Y'Fom,n |M3,1| s G4F om,n lM3'2| Z Fm.n |M3‘3|

Then the combination rule is used 1o determine the D, E, and F thresholds, We use the "minimum of” rule:
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Trmon =mind vTo 0 o Tomons omn 1o (132)

T =min{ ¥Te s 0Ty 2 lkmn | (13b)

Tl", o = min{ YTF, ML R ()T}T,m,ns V,T}-‘, n,n ] - (]3(')
Finally, the D, E, and ' quantization malrix entries are obtained by dividing the thresholds above by the DCT
normalization constants { o, in Equation (1b) )

T['), m,n I T, me,n TI-‘. mon

QI).mn =2 T Qljm n =2 ’ Qi"m‘n =72 . (]4)
Ol Oy Oy, Oy Oy, Oy

The factor 2 results from the maximum quantization error heing half the quantizer step size.

3.1 Quantization in RGB space

For quantization in monitor-RGRB space, we require the matrix o transform from RGB to XYZ, space,
rGeMxyy. Assuming that R, G, and B take on values between O and |, pgpMyyz is the monitor calibration
malrix giving the XY7, values for unit changes in cach of the RGB signals. For cur monitor,

26.1 133 23
ronMxy, = | 252 489 102 | . (15)
93 4.7 357

This matrix is post-multiphed by yyMygy Lo obtain oMy

133 7.0 23
| YOZ | = RGB | ggeMyoz = [ RGB 1| 489 -7.3 102 | . (16)
47 09 357

The matrix pggMypy gives the amplitude of the YOZ errors resulting from unit errors in RGB. These values
indicate the sensitivity of the discrimination model YOZ. channels to RGB errors. For example, a unit error in
the R component leads to an error of 7.1 in the O channel of the model,

We can calculate the R, G, and B coordinate increments which induce a minimum threshold step in cach
of the Y, O, and 7 channels. These are the the entries of paMygy divided into the appropriate minimum
threshold: s by, s bg, or s by, calculated using the expressions in Table 1 and the Yg and Zy values of our
average white, For example, letting (rguMvyaz), 1, signify the upper left corner entry in gguMyoy, the increment
in R which results in a minimum threshold change in Y is (5 by )/ (rgpMvoz)r, 1. RGB minimum threshold
increments calculated in this way are given in Table 2 for YOZ. Note that the minimum threshold for G is
determined by the Y channel (0.0046 versus 0.0113 and 0.0469). That is, the Y channel imposes the strictest
limit on G in order for a G change Lo not induce "too large” a change in YOZ-space. Similarly, the minimum
threshold for R comes from the © channct (0.0116), and for I3 comes from the Z channel (0.0134). Following
the procedure deseribed above, using gapMyoz, the model parameters in Table 1, and the Yg and Zy values for
our monitor, we obtain the quantization matrices shown in Table 3 for our RGB color space.

Table 2. Minimmum thresholds imposed on R, G, and B quantization errors by the Y, O, and Z model
minimum thresholds.

Y 0 Z
0.0170 .0116  0.2091
0.0046  -0.0113  0.0409
0.0483 -0.0881 0.0134

J0x
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Table 3. RGB quantization matrices. The values in these matrices are obtained following the procedure
described in Section 3. The Qg o value 1s Tocated in the upper feft corner of each quantization matrix.  As
specified in the IPEG standard, the values have been rounded to the nearest integer. JPHG also requires
that values in the quantization matrix be <235,

47 52 53 69 94 127 170 224
32 57 53 6t 75 98 128 167
R 33 53 77 89 103 124 154 192

quantization 69 60 89 19 142 166 197 236
matrix 94 75 103 142 181 217 254 297

127 98 124 166 217 269 320 373
170 128 154 197 254 320 388 457
224 167 192 236 297 373 457 544

19 14 4 19 26 35 46 01

14 16 14 16 21 27 35 45

G 14 14 21 24 28 34 42 52
quantization 19 16 24 32 39 45 54 64
malrix 26 21 28 39 49 59 a9 81

35 27 34 45 59 73 ) 102
46 35 42 54 69 87 106 124
61 45 52 64 81 102 124 148
55 94 151 197 268 363 486 641
94 164 151 171 216 281 367 477

B 151 151 221 254 294 355 440 550
quantization [ 197 171 254 340 406 475 562 675
matrix 268 216 294 406 519 621 727 851

363 281 355 475 621 710 915 14066
486 367 440 562 727 915 1109 1306
641 477 550 675 851 1066 1306 1356

Figure 2 plots all the measured R, (3, and B gun, single basis function thresholds from Peterson”
(including those for the dual frequency (m and n % 0) basis functions), after correction by the
summation/ohliqueness factors of Equations (3) and (7). Figure 2 also shows the curves for the model threshold
predictions Ty iy, Lo oas and Ty, using the parameters in Table 1, except with s = 1.0. This value for s
was used to refleet the absence of a spatial summation cffect in the single basis function data. In addition, the
To.m.n and Ty, , threshold prediction curves have been converted to luminance units, since all the threshold
data plotted are in luminance units. This is accomplished by multiplying the Ty, , threshold predictions by

3.3/ 7.1, and the Ty, ,, threshold predictions by 4.7 / 35.7. These factors are obtained from the pgyMyoy
matrix. Figure 2 shows that for the B component, the DC and lowest spatial frequency thresholds arc
determined by the Z channel, and for the R component, the DC threshold is determined by the O channel. All
the G thresholds are assumed to be determined by the Y channel. Note that the DC threshold for the Y channel
{which we assume to be the DC threshold measured for GY is not predicted on a theoretical basis. 'The dot-
dashed line in Tigure 2 demonstrates that the measurcd DC threshold for G, and hence our DC threshold for Y,
was found 1o be approximately equal to the minimum threshold of the Y channel.
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Figure 2: Visibility threshold contrast ratio measurements from Peterson’ of single basis function, single
monitor-gun test images superimposed on a white background, for all basis functions (0<m,n <N).
Circles indicate R gun thresholds, diamond-shaped points indicate G gun thresholds, and squares indicate
B gun thresholds. Large symbols indicate thresholds for basis functions for which m or n =0; thresholds
for basis functions for which m and n #0 are indicated with small symbols. The points plotted at the far
left of the graph are DC basis function (m and n =0) thresholds. All thresholds are plotted after
correction by the summation/obliqueness factors of Equations (3 & 7), with ry=rq;=0,6, The solid,
dashed, and dotted curves show the channel model threshold predictions for Ty, ,, , (Equation (3)), To .
(Equation (7a)}, and Ty ,, , (Equation (7b)), respectively, using the parameters and conversion factors as
described in Scction 3.1. The dot-dashed line shows that the measured G DC threshold, which is the DC
threshold for the Y channel, is approximately equal to the minimum threshold of the Y channel.

3.2 Quantization in YC,C, space

The visual system is known to be much more sensitive to high spatial frequency information in luminance,
compared to chrominance. In an attempt to put all luminance information in a single channel which can then be
compressed with maximum f{idelity, color images are often represented in the YC,C,, color space for image
compression. Pennebaker and Mitchell? give the transformation from RGB to YC,Cpy as

Y =03R+06G+0.18, (17a)
C,=(R-Y Y16 +05, (17b)
Cy=(B-Y)2+05. (17¢)

The additive constants keep the coefficients between 0 and 1, and can be ignored for our purposes. The matrix
ve,c,Myor, is obtained from YCrChMRGB (the inverse of the matrix of coefficients above) as follows:

. 1.0 1.0
ve,e,Myoz = yoo, Mran X ReeMxvz X xvzMyoz = | 1.6 —0.8 0.0 | rgsMyoy (18)
0.0 03 2.0
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66.9 —1.1 482
=| —-17.8 17.1 —4.5
=70 06 679

The matrix y¢ ¢ Myoy, gives the amplitude of the YOZ errors resulting from unit errors in YC,C,,. These values
indicate the sensitivity of the discrimination model YOZ channels to YC,C,, etrors,
In a fashion analogous to Table 2 for RGB, Table 4 shows the increments in Y, C,, and C, which induce

minimum threshold changes in the Y, O, and Z channels. These are calculated in the same way as for RGB, but
using ve,c,Myoz instead of pgpMygz. From Table 4, we see that the minimum thresholds for the chromatic

channels C, and C, are determined by the model color discrimination channets O and Z, respectively. In
addition, the ratio of these thresholds to the Y channel thresholds are relatively low, so that the "minimum of”

combination rule results in the O and Z channels determining T, T , and T¢ for a wider range of
Y. m.n Comyn Cpptnn

spatial frequencies than O and Z did for Ty, , TG 0 and Ty p, . Table 5 shows the quantization matrices
for YC,C,, color space,

Table 4, Minimum thresholds imposed on Y, C,, and C,, quantization errors by the Y, O, and Z model
minimum thresholds,

Y Q Z

Y || 00034 00733  0.0099
C, || 00127 00048  -0.1066
C, || -0.0323  0.1473  0.0071

Table 5. YC,Cy, quantization matrices. The values arc oblained as described in Section 3 and formatted

as in Table 3,
14 10 11 14 19 25 34 45
10 11 11 12 15 20 26 33
Y 1 1 15 821 25 31 38
quantization 14 12 18 24 28 33 39 47
matrix 19 15 21 28 36 43 51 59
25 20 25 33 43 54 64 74
34 26 31 39 51 64 77 91
45 33 38 47 59 74 o 108
20 34 39 52 70 95 127 168
34 43 40 45 57 74 96 125
C, 39 40 58 67 77 93 115 144
gquantization 52 45 67 89 107 125 147 177
matrix 70 57 77 107 136 163 191 223
95 74 93 125 163 202 240 280
127 96 115 147 191 240 291 342
168 125 144 177 223 280 342 408
29 49 101 132 179 243 325 428
49 110 101 114 144 188 245 319
G, 101 101 148 170 197 237 294 367
quantization {| 132 114 170 221 2772 318 376 431
matrix 179 144 197 272 347 415 486 569
243 188 237 318 415 514 611 713
325 245 294 376 486 611 741 873
428 319 367 451 569 713 873 1040
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4. CONCLUSIONS

We have presented a model for predicting visibility thresholds for DCT coefficient quantization error, [rom
which quantization matrices for usc in DCT-based compression can be designed. We estimated values for the
parameters of our model based on experimentalty measured visibility thresholds. The frequency parameters we
estimated, [y and f . agree fairly well with results others have reported for similar parameters. The values we
have estimated for ky and k¢, arc similar to those estimated by others, however we have found these parameters
to vary for the different experimentally measurcd thresholds. The value we have proposed for the
obligueness/summation parameters, ry and rey,, only reflects summation and does not reflect an cffect due o
obliqueness. More data may be needed to more determine values for ky, kg, ry, and rqy more reliably; though
those we propose here are reasonable and result in quantization matrices which perform well in preliminary
tests. ‘The value for s we have proposed is based on a limited amount of data. Further experiments are needed
1o determine the spatial extent over which summation occurs among DCT quantization errors, in order to
estimate s more accurately.

The quantization matrices computed by the techniques described above take no account of image content.
A promising extension of this model may be to optimize the quantization matrices for individual images or a
c¢lass of images, That is, use an image-dependent approach (o quantization matrix design. Watson'> has shown
how this may be done for grayscale images, by taking into account local light adaptation, local contrast
masking, and error pooling, Watson’s lechnique can be extended to the case of color images by adopting rules
governing masking and adaptation within the O and 7 channcels.
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